DETECTING STEINER AND LINEAR ISOMETRIES OPERADS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isometries and the Linear Algebra of Quadratic

0.1. 2D. In the context of linear algebra a plane is a two-dimensional real vector space. A basis for a plane consists of any two vectors E1,E2 which span the plane. ‘Spanning’ means that any vector v⃗ in the plane can be written as v⃗ = uE1 + vE2 with u, v ∈ R. It is a theorem that for two vectors in the plane “spanning” is equivalent to being “linearly independent”. The ‘linearly independent pa...

متن کامل

Surjective Real-Linear Uniform Isometries Between Complex Function Algebras

In this paper, we first give a description of a surjective unit-preserving real-linear uniform isometry $ T : A longrightarrow B$,  where $ A $ and $ B $ are complex function spaces on compact Hausdorff spaces $ X $ and $ Y $, respectively, whenever ${rm ER}left (A, Xright ) = {rm Ch}left (A, Xright )$ and ${rm ER}left (B, Yright ) = {rm Ch}left (B, Yright )$. Next, we give a description of $ T...

متن کامل

Linear Groups of Isometries with Poset Structures

Let V be an n-dimensional vector space over a finite field Fq and P = {1, 2, . . . , n} a poset. We consider on V the poset-metric dP . In this paper, we give a complete description of groups of linear isometries of the metric space (V, dP ), for any poset-metric dP . We show that a linear isometry induces an automorphism of order in poset P , and consequently we show the existence of a pair of...

متن کامل

Codimension 1 Linear Isometries on Function Algebras

Let A be a function algebra on a locally compact Hausdorff space. A linear isometry T : A −→ A is said to be of codimension 1 if the range of T has codimension 1 in A. In this paper, we provide and study a classification of codimension 1 linear isometries on function algebras in general and on Douglas algebras in particular.

متن کامل

Linear Isometries between Subspaces of Continuous Functions

We say that a linear subspace A of C0(X) is strongly separating if given any pair of distinct points x1, x2 of the locally compact space X, then there exists f ∈ A such that |f(x1)| 6= |f(x2)|. In this paper we prove that a linear isometry T of A onto such a subspace B of C0(Y ) induces a homeomorphism h between two certain singular subspaces of the Shilov boundaries of B and A, sending the Cho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 2020

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s001708952000021x